Impact cratering, volcanism and tectonism on Solar system bodies

Impact cratering

Bolide: Photo of Hiroyuki-lida, Japan

Sterlitamak impact crater, Russia

Meteor crater, panorama of crater interior

Meteor crater rim seen from the road

Roter Kamm crater, Namibia, D = 2.5 km

New Quebec crater, Canada, D = 3.4 km

Elgygytgyn crater, Chukotka, Russia, D = 18 km

Elgygytgyn crater, Dr. Feldman is exploring it

Impact crater Nordlingen Ries, Germany

D = 23 km

Bunte (pied) breccia, crater Ries, Germany

Suevute, crater Ries, Germany

Moldavite: splash of impact melt from crater Ries

Craters Clear Water West (36 km) & East (26 km) Quebec, Canada

Popigai crater, Siberia, Russia, D = 100 km

Popigai crater, geologic map of the region

ГЕОЛОГИЧЕСКАЯ КАРТА ПОПИГАЙСКОЙ АСТРОБЛЕМЫ

Масштаб 1:1 000 000

Составили: В.Л.Масайтис, М.С.Мащак, М.В.Михайлов, А.Н.Данилин, В.Т.Кириченко

1978

A

M 10007

-1000-

-2000-

-3000-

-4000-

Popigai geologic map by Masaitis et al., 1978

дополнительные условные обозначения

-2000

-3000

-4000

Апогнейсовая аутигенная брекчия

Министерство Всесоюзный ордена Ленин геологический и Лени

paspesa

ялд

Только

Popigai crater (astrobleme) Megabreccia and tagamites at Rassokha river

Tagamite = solidified impact melt, crater Janisjarvi, Russia

Sudbury crater (astrobleme) Has very rich nickel deposit inside

Sudbury crater geologic map

Sudbury shutter cones

Vredefort crater, South Africa, initially D ~ 300 km

Formed

2 b.y.

ago

Has gold deposits within

Tunguska event

Tunguska event: radially fallen forest

World map of impact structures

Koeberl: http://www.lpi.usra.edu/publications/slidesets/craters/

Lunar simple crater

Lunar complex crater: central-peaked

Lunar complex crater: double-ringed

Lunar Orientale basin: multi-ringed

Morphology of impact craters depends on their size от их диаметра

On the Moon <10 km – bowl-shaped 15-20 km – transition to craters with central peak 20-90 km – craters with central peak > 90 km – ringed basins

Lunar crater Copernicus with secondary crater around

Mercury

Small craters – bowl-shaped Large – with central peak Very large – ringed basins

Messenger, NASA

Mariner 10 images

Impact craters of Venus

Impact craters of Mars: Small crater bowl-shaped, large - with central peak and excavate material, containing water ice

with «normal» ejecta

Crater Yuti with central peak, ejecta are fluidized (mud flows)

100-km crater with central peak on Mimas (D = 400 km)

Impact basin on Callisto (D = 4680 km)

300 км

Voyager 2 image

Galileo image
Highland breccia Apollo 16, Fragments are well seen

Grains of quartz affected and not affected by impact

20 micron

No impact effects

Planar structures in impacted quartz

http://www.lpi.usra.edu/publications/slidesets/craters/

Planar structures in impacted quartz Crater Janisjarvi, Karelia, photo of L.V. Sazonova

Impact diamonds from Australia and Brazil

Impact diamond. Quinsland, Australia

Impact diamond (carbonado) Brazil

Stages

of impact

http://www.psi.edu/explorecraters/ intro_pics/impact_stages_16.jpg

Structure of impact craters: Synthesis of terrestrial and lunar data

Mean speed of collision (km/s) of meteoroids with planetary bodies

Planetary body	Escape velocity	Early planatesimals	Asteroids	Comets
Mercury	4.3	4.7	20	62
Venus	10.3	11.5	18	47
Earth	11.2	12.5	18	40
The Moon	2.37	6.1	14	38
Mars	5.03	5.6	10	31

Specific kinetic energy of projectile (erg/g) in comparioson with specific energy of explosion

TNTNuclearV = 5 km/sV = 15 km/sV = 30 km/sV = 45 km/s 4×10^{10} 1×10^{16} 1.2×10^{11} 1.1×10^{12} 4.5×10^{12} 1×10^{13}

Impact induced transformations of materials 1 bar = 1 km/cm2, 1 kbar = 103 bar, 1 Mbar = 106 bar

Mechanical crushingSeveral kbarModification of crystal structure100-200 kbarPlanar elements100-200 kbarIsotropization of minerals SiO2260-300 kbarTransformation into glass with preservation of rock structure

M impact vapor \approx M projectile M impact melt \approx 10 M projectile

Experimental data on energy distribution (%) in impacts

Target – sand Target - basalt Heating Projectile ~6 4-12 19-23 ~25 Target Compaction ~20 1 Crushing ~8 10-24 Ejection ~53 42-53

For Earth D projectile $\approx 1/10 - 1/20$ D crater Crater with D = 10 km was formed by ~1 km projectile

Chicxulub crater (astrobleme) location

© 2000 by Jake Bailey Adapted from "Atlas of Mesozoic and Cenozoic Coastlines" (Smith et al. 1994)

Chicxulub gravity map

Structure of crater Chicxulub

K-T boundary, Raton basin, Colorado, USA

Impact which killed dinosaurs, art by Don Davis

Origin of the Moon: Giant impact hypothesis

Mars-size body

The Moon is formed due to accretion of the impact ejecta on the around-Earth orbit

Magmatism (volcanism) on the Solar system bodies

Plate tectonics -- working heat engine of Earth

How plate tectonic works

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sea-floor spreading lava eruption: Pillow lavas

Several meters

Sea-floor spreading: small volcanic ridge at Mid Atlantic Ridge / _{Sonar image}

East African rifts

Nyiragongo, East Africa

Hawaii big island: hot spot volcanism

Landsat image

Map

Hawaii, Mauna Loa summit

Caldera Kilauea eruption

Mauna Loa eruption

Hawaii, aa and pahoehoe lavas

Lava fountaining forms cinder cones, Hawaii

Cinder cone and Mauna Kea volcano behind

St. Helens volcano: pre eruption

St. Helens blast and nuee ardente May 18, 1980

Blast

Nuee ardente

USGS photo

St. Helens pyroclastic tongue

St. Helens pyroclastic deposit

St. Helens dome, August 1981

Lunar maria

Basaltic lavas

Lunar volcanism

Plains-forming basaltic lavas make maria.

Sinuous rilles – erosion by hot lava flow

108 km crater Alphonsus has on its floor fractures and small craters with dark halo – pyroclastic deposit?

In 1958 Soviet astronomer N. Kozyrev observed here a gas release

Gruithuisen domes -- non-basaltic volcanism?

Mercury: Smooth plains resembling lunar maria

Volcano in Caloris basin, Mercury

- On volcano are seen irregular rimless depressions
- There are rather large impact craters aroun the volcano
- On the volcano surface are seen onle small craters => large difference in time
- Source of the lava is not the impact melt

Venus: Plains made of basaltic lavas. Radar bright lavas are probably close to the aa type.

Venus: Shield volcanic plains

Volcanic shields with gentle (3-5 deg) slopes Probably formed by basaltic lavas

Lobate lava plains

Volcanic flows with rather rough (aa) surface, Superposed on plains with wrinkle ridges and shield plains

Maat Mons volcano – highest on Venus (+9 km)

Maat slopes are covered by radar bright lobate flows superposed on surrounding regional volcanic plains

Maat Mons volcano – perspective view

Vertical exaggeration ~ 20:1

Rare type of volcanic constructs on Venus: steep-sided domes

Tens km in diameter, Hundreds meters high, Steep-sided: => Viscous lavas => Evolved composition e.g. dacites? or => Basalt with gas bubbles?

Mars: Olympus Mons, 600 km across, 21 km high

Intermediate and small volcanoes of Mars

Ceraunius Tholus

50 km

Courtesy of Calvin J. Hamilto

Cinder cones on the surface of Mars

Volcanism on Io: closest to Jupiter Galilean satellite of the planet

Distance to center of Jupiter ~6 R Jup.

Image taken by Galileo

Tidal heating Plumes of volcanic eruptions Orange color – sulfur But lavas are basaltic No impact craters => very young surface

The eruption plume height is 160 km

Voyager 1 image

Io: Chain of volcanic calderas Twashtar

Europa – second Galilean satellite of Jupiter – faults, domes and reddish spots and bands

Multiphase tectonics / water-ice (cryo) volcanism

Enceladus: Soth pole Geisers of H₂O vapor => Result of tidal heating

Area of source of geiser #6

BAGHDA SULCUS 5 km Cassini 31.10.2008

Triton – satellite of Neptune Plains – products of water-ice (cryo) volcanism

200 km

https://www.nasa.gov/image-feature/mosaic-of-high-resolution-images-of-plute

Nitrogen cryovolcanism on Pluto

Sputnik Planum

Tectonism

Spreading: The Read Sea rifts and Aqaba Bay

Extension structures: faults and graben

Faults

Graben

Subduction zone: Compresion: Cascades

Compression structures: folds

Transform faults St. Andres, California

Lunar graben – structures of extension

Lunar sinuous rilles: structures of compression

Tectonism of Mercury:

- Ridges and graben
- Long scarps (upthrusts) up to 1-3 km high

=> Compression of planet with decrease of radius by 2 km

Scarps

Graben

Rift zones of Venus

Beta Regio – tectonic uplift, cut by Devan rift

Devana rift and impact crater Balch

Lakshmi plateau and mountain belts around

Venus: Tesserae: multiphase tectonism Compression and extension

Venus: Ridge belts: Compression

Tectonism of Mars: Mostly extension, partly compression

Valles Marinares – Rift zones
Mars: Graben parallel to Valles Marinares

Mars: Sinuous rilles indicate on compression

In morphology and size are close to those of the Moon and Venus

Europa: Faults and folds

Faults on Ganimede

Titania (D = 1580 km) – satellite of Uranus

Triton – satellite of Neptune Tectonic deformations in the cantalupa terrain

Presence / intensity of magmatic and tectonic activity on planets / satellite is a function of their sizes and tidal disturbances by the central body

Impact processes were and are in work, but their traces are well seen only where other geologic processes are weak

Sputnik 1 launch, October 4, 1957

This image was composed by Don Mitchell from the nresreel, Don Mitchell, www.mentallandscape.com